NTE7224 Integrated Circuit Quasi-Resonant Topology Primary Switching Regulator #### **Description:** The NTE7224 is a quasi–resonant topology integrated circuit in a 7–Lead TO220 type package designed for SMPS applications. This device shows lower EMI noise characteristics than conventional PWM solutions, especially at greater than 2MHz. It also provides a soft–switching operation to turn on the internal MOSFET at close to zero voltage (V_{DS} bottom point) by use of the resonant characteristic of primary inductance and a resonant capacitor. The package is a fully molded TO220, which contains the controller chip (MIC) and MOSFET, enabling output power up to 160W with a $120V_{AC}$ input. The bottom-skip function skips the first bottom of V_{DS} and turns on the MOSFET at the second bottom point, to minimize an increase of operational frequency at light output load, improving system-level efficiency over the entire load range. There are two standby functions available to reduce the input power under very light load conditions. The first is an auto-burst mode operation that is internally triggered by periodic sensing, and the other is a manual standby mode, which is executed by clamping the secondary output. In general applications, the manual standby mode reduces the input power further compared to the auto-burst mode. The soft-start function minimizes surge voltage and reduces power stress to the MOSFET and to the secondary rectifying diodes during the start-up sequence. Various protections such as overvoltage, overload, overcurrent, maximum on-time protections and avalanche-energy-guaranteed MOSFET secure good system-level reliability. #### Features: - Quasi–Resonant Topology IC ⇒ Low EMI Noise and Soft Switching - Bottom–Skip Operation ⇒ Improved System Efficiency Over the Entire Output Load by Avoiding Increase of Switching Frequency - Standby Burst Mode Operation ⇒ Lowers Input Power at Very Light Output Load Conditions - Avalanche-Guaranteed MOSFET ⇒ Improves System-Level Reliability and Does Not Require V_{DSS} derating - 500V / 0.57Ω, 160W (120V_{AC} Input) - Various Protections ⇒ Improved System-Level Reliability - Pulse–By–Pulse Drain Overcurrent Limiting - Overvoltage Protection (Bias Winding Voltage Sensing), with Latch - Overload Protection with Latch - Maximum On-Time Limit #### **Applications:** - Set Top Box - LCD PC Monitor, LCD TV - Printer, Scanner - SMPS Power Supplies | Absolute Maximum Ratings: (T _A = +25°C, Note 1 unless otherwise specified) | |---| | Drain Current (Single Pulse, Pin1-Pin3), I _D peak | | Maximum Switching Current ($T_A = -20^\circ$ to $+125^\circ$ C, Pin1–Pin3, Note 2), I_D max | | Single Pulse Avalanche Energy, E _{SA} | | (Single Pulse, V _{DD} = 99V, L = 20mH, I _L peak = 5.8A, Pin1-Pin3) | | Input Voltage for Controller [MIC] (Pin4–Pin3), V _{CC} | | SS/OLP Terminal Inflow Current (Pin6–Pin3), V _{SSOLP} | | FB Terminal Inflow Current (Pin6–Pin3), I _{FB} | | FB Terminal Voltage (I _{FB} within the limits of I _{FB} , Pin6–Pin3), V _{FB} 0.5 to 9.0V | | OCP/BD Terminal Voltage (Pin7–Pin3), V _{OCPBD} | | MOSFET Power Dissipation (Pin1-Pin3), P _{D1} | | With infinite heatsink | | Without heatsink 1.3W | | Controller [MIC] Power Dissipation (V _{CC} * I _{CC} , Pin4-Pin3), P _{D2} | | Junction Temperature, T _J | | Operating Internal Leadframe Temperature range (Refer to T _{OP}), T _F 20° to +115°C | | Operating Ambient Temperature Range, T _{OP} 20° to +115°C | | Storage Temperature Range, T _{stg} 40° to +125°C | | | - Note 1. All performance characteristics given are typical values for circuit or system baseline design only and are at the nominal operating voltage and ambient temperature of +25°C, unless otherwise stated. - Note 2. I_D max is the drain current determined by the drive voltage of the IC and the threshold voltage, V_{th} , of the MOSFET. ### **Electrical Characteristics:** | Parameter | Symbol | Terminals | Min | Тур | Max | Unit | |--|-------------------------|-------------|--------|--------|--------|------| | Electrical Characteristics for Controller (MIC) V _{CC} = 20V, T _A = +25°C, Note 3 unless otherwise specified | | | | | | | | Power Supply Start-Up Operation | | | | | | | | Operation Start Voltage | V _{CC(ON)} | Pin4 – Pin3 | 16.3 | 18.2 | 19.9 | V | | Operation Stop Voltage | V _{CC(OFF)} | Pin4 – Pin3 | 8.8 | 9.7 | 10.6 | V | | Circuit Current In Operation | I _{CC(ON)} | Pin4 – Pin3 | _ | _ | 6 | mΑ | | Circuit Current In Non-Operation | I _{CC(OFF)} | Pin4 – Pin3 | _ | _ | 100 | μΑ | | Oscillation Frequency | f _{OSC} | Pin1 – Pin3 | 19 | 22 | 25 | kHz | | Soft Start Operation Stop Voltage | V _{SSOLP(SS)} | Pin5 – Pin3 | 1.1 | 1.2 | 1.4 | V | | Soft Start Operation Charging Current | I _{SSOLP(SS)} | Pin5 – Pin3 | -710 | -550 | -390 | μΑ | | Normal Operation | • | | | | • | | | Bottom-Skip Operation Threshold Voltage 1 | V _{OCPBD(BS1)} | Pin7 – Pin3 | -0.720 | -0.665 | -0.605 | V | | Bottom-Skip Operation Threshold Voltage 2 | V _{OCPBD(BS2)} | Pin7 – Pin3 | -0.485 | -0.435 | -0.385 | V | | Overcurrent Detection Threshold Voltage | V _{OCPBD(LIM)} | Pin7 – Pin3 | -0.995 | -0.940 | -0.895 | V | | OCP/BDOCP/BD Terminal Outflow Current | I _{OCPBD} | Pin7 – Pin3 | -250 | -100 | -40 | μΑ | | Quasi-Resonant Operation Threshold Voltage 1 | V _{OCPBD(TH1)} | Pin7 – Pin3 | 0.28 | 0.40 | 0.52 | V | | Quasi-Resonant Operation Threshold Voltage 2 | V _{OCPBD(TH2)} | Pin7 – Pin3 | 0.67 | 0.80 | 0.93 | V | | FB Terminal Threshold Voltage | V _{FB(OFF)} | Pin6 – Pin3 | 1.32 | 1.45 | 1.58 | V | | FB terminal Inflow Current (Normal Operation) | I _{FB(ON)} | Pin6 – Pin3 | 600 | 1000 | 1400 | μΑ | Note 3. Current polarity with respect to the IC: positive current indicates current sink at the terminal named, negative current indicates source at the terminal named. # **Electrical Characteristics (Cont'd):** | Parameter | Symbol | Terminals | Min | Тур | Max | Unit | | |---|---|----------------------------|------|------|------|------|--| | Electrical Characteristics (Cont'd) for Controller (MIC) V _{CC} = 20V, T _A = +25°C, Note 3 unless otherwise specified | | | | | | | | | Standby Operation | | | | | | | | | Standby Operation Start Voltage | V _{CC(S)} | Pin4 – Pin3 | 10.3 | 11.1 | 12.7 | V | | | Standby Operation Start Voltage Interval | V _{CC(SK)} | Pin4 – Pin3 | 1.10 | 1.35 | 1.75 | V | | | Standby Non-Operation Circuit Current | I _{CC(S)} | Pin4 – Pin3 | _ | 20 | 56 | μΑ | | | FB Terminal Inflow Current, Standby Operation | I _{FB(S)} | Pin6 – Pin3 | _ | 4 | 14 | μΑ | | | FB Terminal Threshold Voltage, Standby Operation | V _{FB(S)} | Pin6 – Pin3 | 0.55 | 1.10 | 1.50 | V | | | Minimum On Time | I _{ON(MIN)} | Pin1 – Pin3 | _ | 0.75 | 1.20 | μs | | | Maximum On Time | I _{ON(MAX)} | Pin1 – Pin3 | 27.5 | 32.5 | 39.0 | μs | | | Protection Operation | | | | • | | | | | Overload Protection Operation Threshold Voltage | V _{SSOLP(OLP)} | Pin5 – Pin3 | 4.0 | 4.9 | 5.8 | V | | | Overload Protection Operation Charging Current | I _{SSOLP(OLP)} | Pin5 – Pin3 | -16 | -11 | -6 | μΑ | | | Overvoltage Protection Operation Voltage | V _{CC(OVP)} | Pin4 – Pin3 | 25.5 | 27.7 | 29.9 | V | | | Latch Circuit Holding Current (Note 4) | I _{CC(H)} | Pin4 – Pin3 | _ | 45 | 140 | μΑ | | | Latch Circuit Release Voltage (Note 4) | V _{CC(La.OFF)} | Pin4 – Pin3 | 6.0 | 7.2 | 8.5 | V | | | Electrical Characteristics for MOSFET | Electrical Characteristics for MOSFET T _A = +25°C unless otherwise specified | | | | | | | | Drain-to-Source Breakdown Voltage | V_{DSS} | Pin1 – Pin3 | 500 | _ | _ | V | | | Drain Leakage Current | I _{DSS} | Pin1 – Pin3 | _ | _ | 300 | μΑ | | | On Resistance | R _{DS(on)} | Pin1 – Pin3 | _ | _ | 0.57 | Ω | | | Switching Time | t _f | Pin1 – Pin3 | _ | _ | 400 | ns | | | Thermal Resistance | R_{thJA} | Junction to Internal Frame | - | - | 1.55 | °C/W | | Note 3. Current polarity with respect to the IC: positive current indicates current sink at the terminal named, negative current indicates source at the terminal named. Note 4. Latch circuit refers to operation during Overload Protection or Overvoltage Protection. # **Electrical Characteristics:** (Test Conditions, Note 5) | Parameter | Test Conditions | V _{CC} (V) | |---|--|---------------------| | Operation Start Voltage | V _{CC} voltage at which oscillation starts. | 0 → 20 | | Operation Stop Voltage | V _{CC} voltage at which oscillation stops. | 20 → 8.8 | | Circuit Current In Operation | Inflow current flowing into power supply terminal in oscillation. | 20 | | Circuit Current In Non-Operation | Inflow current flowing into power supply terminal prior to oscillation. | 15 | | Oscillation Frequency | Oscillation frequency (f _{OSC} = 1 / T). | 20 | | Soft Start Operation Stop Voltage | SS/OLP terminal voltage at which ISS/OLP reach ≥–100µA by raising the SS/OLP terminal voltage from 0V gradually. | 20 | | Soft Start Operation Charging Current | SS/OLP terminal charging current (SS/OLP terminal voltage = 0V). | 20 | | Bottom-Skip Operation Threshold Voltage 1 | Input 1 μ s pulse width to OCP/BD terminal twice after V ₁₋₃ rises. After that, offset the input waveform gradually from 0V in the minus direction. Measurement of the offset voltage V _{OCPBD(BS1)} is taken when the V ₁₋₃ start-to-fall point switches from two-pulses-after to one-pulse-after. | 20 | | Bottom-Skip Operation Threshold Voltage 2 | After measuring $V_{OCPBD(BS1)}$, offset the input waveform gradually. Measurement of the offset voltage $V_{OCPBD(BS2)}$ is taken when the V_{1-3} start-to-fall point switches from two-pulses-after to one-pulse-after. | 20 | Note 5. Oscillating operation is specified with a rectangular waveform between Pin1 and Pin3. # Electrical Characteristics (Cont'd): (Test Conditions, Note 5) | Parameter | Test Conditions | V _{CC} (V) | |---|--|---------------------------| | Overcurrent Detection Threshold Voltage | OCP/BD terminal voltage at which oscillation stops by lowering the OCP/BD terminal voltage from 0V gradually. | 20 | | Quasi-Resonant Operation Threshold Voltage 1 | OCP/BD terminal voltage at which oscillation starts with setting the OCP/BD terminal voltage at 1V, and then lowering the voltage gradually. | 20 | | Quasi-Resonant Operation Threshold Voltage 2 | OCP/BD terminal voltage at which oscillation stops by raising the OCP/BD terminal voltage from 0V gradually. | 20 | | FB Terminal Threshold Voltage | FB terminal voltage at which oscillation stops by raising the FB terminal voltage from 0V gradually. | 20 | | FB Terminal Inflow Current (Normal Operation) | FB terminal inflow current (FB terminal voltage = 1.6V). | 20 | | Standby Operation Start Voltage | V _{CC} voltage at which I _{CC} reaches ≥1mA (FB terminal voltage = 1.6V). | 0 → 15 | | Standby Operation Start Voltage Interval | Specified by V _{CC(S)} – V _{CC(OFF)} . | - | | Standby Non-Operation Circuit Current | Inflow current flowing into power supply terminals prior to oscillation (FB terminal voltage = 1.6V). | 10.2 | | FB Terminal Inflow Current, Standby Operation | FB terminal inflow current (FB terminal voltage = 1.6V). | 10.2 | | FB Terminal Threshold Voltage Standby Operation | FB terminal voltage at which oscillation starts by raising the FB terminal voltage from 0V gradually. | 15 | | Minimum On Time | Waveform between terminals 1 and 3 at low. | 20 | | Maximum On Time | Waveform between terminals 1 nd 3 at low. | 20 | | Overload Protection Operation Threshold Voltage | SS/OLP terminal voltage at which oscillation stops. | 20 | | Overload Protection Operation Charging Current | SS/OLP terminal charging current (SS/OLP terminal voltage = 2.5V). | - | | Overvoltage Protection Operation Voltage | V _{CC} voltage at which oscillation stops. | 0 → 30 | | Latch Circuit Holding Current | Inflow current at V _{CC(OFF)} - 0.3; after OVP operation. | V _{CC(OFF)} -0.3 | | Latch Circuit Release Voltage | V_{CC} voltage at which I_{CC} reaches 20 μA or lower by decreasing V_{CC} after OVP operation. | 30 → 6 |