NTE5442 thru NTE5448
Silicon Controlled Rectifier (SCR)
8 Amp, TO127

Description:
The NTE5442 thru NTE5448 are silicon controlled rectifiers (SCR's) in a TO127 type package designed for high-volume consumer phase-control applications such as motor speed, temperature, and light controls, and for fast switching applications in ignition and starting systems, voltage regulators, vending machines, and lamp drivers.

Features:
- Small, Rugged Construction
- Practical Level Triggering and Holding Characteristics @ +25°C:
 \[I_{GT} = 7\text{mA Typ} \]
 \[I_{Hold} = 6\text{mA Typ} \]
- Low "ON" Voltage: \[V_{TM} = 1\text{V Typ} @ 5\text{A} @ +25°C \]
- High Surge Current Rating: \[I_{TSM} = 80\text{A} \]

Absolute Maximum Ratings: (Note 1, \(T_J = +100°C \) unless otherwise specified)
- Peak Repetitive Forward and Reverse Blocking Voltage (Note 2), \(V_{DRM} \) or \(V_{RRM} \)
 - NTE5442 ... 50V
 - NTE5444 .. 200V
 - NTE5446 .. 400V
 - NTE5448 .. 600V
- Non-Repetitive Peak Reverse Blocking Voltage (\(t = 5\text{ms (max)} \) duration), \(V_{RSM} \)
 - NTE5442 ... 75V
 - NTE5444 .. 300V
 - NTE5446 .. 500V
 - NTE5448 .. 700V
- RMS On-State Current (All Conduction Angles), \(I_{T(RMS)} \) .. 8A
- Average On-State Current (\(T_C = +73°C \)), \(I_{T(AV)} \) ... 5.1A
- Peak Non-Repetitive Surge Current, \(I_{TSM} \)
 (1/2 cycle, 60Hz preceded and followed by rated current and voltage) ... 80A
- Circuit Fusing (\(T_J = -40° \) to +100°C, \(t = 1\text{ms to 8.3ms} \), \(I^2t \) .. 25A^2sec
- Peak Gate Power, \(P_{GM} \) ... 5W
- Average Gate Power, \(P_{G(AV)} \) .. 500mW
- Peak Forward Gate Current, \(I_{GM} \) ... 2A
- Peak Reverse Gate Voltage, \(V_{RGM} \) ... 10V
- Operating Junction Temperature Range, \(T_J \) ... \(-40° \) to +100°C
- Storage Temperature Range, \(T_{stg} \) .. \(-40° \) to +150°C
- Maximum Thermal Resistance, Junction–to–Case, \(R_{thJC} \) .. 2.5°C/W
- Typical Thermal Resistance, Junction–to–Ambient, \(R_{thJA} \) .. 40°C/W

Note 1. NTE5446 is a discontinued device and is replaced by NTE5448.
Note 2. Ratings apply for zero or negative gate voltage but positive gate voltage shall not be applied concurrently with a negative potential on the anode. When checking forward or reverse blocking capability, thyristor devices should not be tested with a constant current source in a manner that the voltage applied exceeds the rated blocking voltage.
Electrical Characteristics: \(T_C = +25\degree C \) unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Forward or Reverse Blocking Current</td>
<td>(I_{DRM}, I_{RRM})</td>
<td>Rated (V_{DRM}) or (V_{RRM}), Gate Open</td>
<td>(T_J = +25\degree C)</td>
<td>–</td>
<td>–</td>
<td>10 μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(T_J = +100\degree C)</td>
<td>–</td>
<td>–</td>
<td>2 mA</td>
</tr>
<tr>
<td>Gate Trigger Current (Continuous DC)</td>
<td>(I_{GT})</td>
<td>(V_D = 7V, R_L = 100\Omega)</td>
<td>(T_C = +25\degree C)</td>
<td>–</td>
<td>7</td>
<td>30 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(T_C = -40\degree C)</td>
<td>–</td>
<td>–</td>
<td>60 mA</td>
</tr>
<tr>
<td>Gate Trigger Voltage (Continuous DC)</td>
<td>(V_{GT})</td>
<td>(V_D = 7V, R_L = 100\Omega)</td>
<td>(T_C = +25\degree C)</td>
<td>–</td>
<td>0.75</td>
<td>1.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(T_C = -40\degree C)</td>
<td>–</td>
<td>–</td>
<td>2.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_D = \text{Rated } V_{DRM}, R_L = 100\Omega, T_J = +100\degree C)</td>
<td></td>
<td>0.2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Peak On–State Voltage</td>
<td>(V_{TM})</td>
<td>Pulse Width = 1ms to 2 ms, Duty Cycle (\leq 2%)</td>
<td>(I_{TM} = 5A_{\text{peak}})</td>
<td>–</td>
<td>1.0</td>
<td>1.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(I_{TM} = 15.7A_{\text{peak}})</td>
<td>–</td>
<td>–</td>
<td>2.0 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_D = \text{Rated } V_{DRM}, R_L = 100\Omega, T_J = +100\degree C)</td>
<td></td>
<td>0.2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Holding Current</td>
<td>(I_{Hold})</td>
<td>(V_D = 7V, \text{Gate Open})</td>
<td>(T_C = +25\degree C)</td>
<td>–</td>
<td>6</td>
<td>40 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(T_C = -40\degree C)</td>
<td>–</td>
<td>–</td>
<td>70 mA</td>
</tr>
<tr>
<td>Gate Controlled Turn–On Time</td>
<td>(t_{gt})</td>
<td>(I_{TM} = 5A, I_{GT} = 20mA, V_D = \text{Rated } V_{DRM})</td>
<td></td>
<td>–</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>Circuit Commutated Turn–Off Time</td>
<td>(t_q)</td>
<td>(I_{TM} = 5A, I_R = 5A)</td>
<td>(T_J = +100\degree C)</td>
<td>–</td>
<td>15</td>
<td>–</td>
</tr>
<tr>
<td>Critical Rate–of–Rise of Off–State Voltage</td>
<td>(dv/dt)</td>
<td>(V_D = \text{Rated } V_{DRM}, \text{Exponential Waveform, } T_J = +100\degree C, \text{Gate Open})</td>
<td></td>
<td>–</td>
<td>50</td>
<td>–</td>
</tr>
</tbody>
</table>

![Diagram](image_url)

- Heat Sink Contact Area (Bottom): .150 (3.82) Max
- A (Heat Sink Area): .166 (4.23) Max
- .143 (3.65) Dia Thru
- .668 (17.0) Max
- .530 (13.4) Max
- .655 (16.6) Max
- .150 (4.23) Max