NTE7081
Integrated Circuit
RGB Video Amplifier System

Description:
The NTE7081 is a wideband video amplifier system in a 28–Lead DIP type package intended for high resolution RGB color monitor applications. In addition to three matched video amplifiers, the NTE7081 contains three gated differential input black level clamp comparators for brightness control and three matched attenuator circuits for contrast control. Each video amplifier contains a gain set or “Drive” node for setting maximum system gain ($A_V = 4$ to 10) as well as providing trim capability. The NTE7081 also contains a voltage reference for the video inputs.

Features:
- Three Wideband Video Amplifiers (70MHz @ –3dB)
- Inherently Matched (± 0.5dB) Attenuators for Contrast Control
- Three Externally Gated Comparators for Brightness Control
- Provisions for Independent Gain Control (Drive) of each Video Amplifier
- Video Input Voltage Reference
- Low Impedance Output Driver

Absolute Maximum Ratings:
Supply Voltage (Pin1, Pin13, Pin23, Pin28, Note 1), V_{CC} $13.5V$
Voltage at Any Input Pin, V_{IN} ... $V_{CC} \geq V_{IN} \geq GND$
Video Output Current, I_{16}, I_{20}, or I_{28} ... $28mA$
Power Dissipation (Note 2), P_D ... $2.5W$
Junction Temperature, T_J ... $+150^\circ C$
Operating Temperature Range, T_A ... 0° to $+70^\circ C$
Storage Temperature Range, T_{stg} ... -65° to $+150^\circ C$
Thermal Resistance, Junction–to–Ambient, R_{thJA} ... $50^\circ C/W$
Lead Temperature (During Soldering, 10sec.), T_L ... $+265^\circ C$
ESD susceptibility ... $2kV$

Note 1. V_{CC} supply pins 1, 13, 23, and 28 must be externally wired together to prevent internal damage during V_{CC} power ON/OFF cycles.
Note 2. Derate above $+25^\circ C$ based on R_{thJA} and T_J.
Electrical Characteristics: \((T_A = +25{}^{\circ}C, V_{CC1} = V_{CC2} = 12V\) unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Typ</th>
<th>Tested (Note 3)</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Static Test ((S17, S21, S26) Open, (V_{12} = 6V, V_{14} = 0V, V_{15} = 2V) unless otherwise specified)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td>(I_S)</td>
<td>(V_{CC1}) Only</td>
<td>73</td>
<td>90</td>
<td>mA Max</td>
<td></td>
</tr>
<tr>
<td>Video Input Reference Voltage</td>
<td>(V_{11})</td>
<td></td>
<td>2.4</td>
<td>2.2</td>
<td>(V_{MIN})</td>
<td></td>
</tr>
<tr>
<td>Video Input Bias Current</td>
<td>(I_b)</td>
<td>Any One Amplifier</td>
<td>5</td>
<td>20</td>
<td>(\mu A) Max</td>
<td></td>
</tr>
<tr>
<td>Clamp Gate Low Input Voltage</td>
<td>(V_{14L})</td>
<td>Clamp Comparators ON</td>
<td>1.2</td>
<td>0.8</td>
<td>(V_{MIN})</td>
<td></td>
</tr>
<tr>
<td>Clamp Gate High Input Voltage</td>
<td>(V_{14H})</td>
<td>Clamp Comparators OFF</td>
<td>1.6</td>
<td>2.0</td>
<td>(V_{MAX})</td>
<td></td>
</tr>
<tr>
<td>Clamp Gate Low Input Current</td>
<td>(I_{14L})</td>
<td>(V_{14} = 0V)</td>
<td>–0.5</td>
<td>–5.0</td>
<td>(\mu A) Max</td>
<td></td>
</tr>
<tr>
<td>Clamp Gate High Input Current</td>
<td>(I_{14H})</td>
<td>(V_{14} = V_{CC})</td>
<td>0.005</td>
<td>1.0</td>
<td>(\mu A) Max</td>
<td></td>
</tr>
<tr>
<td>Clamp Cap Charge Current</td>
<td>(I_{clamp(+)})</td>
<td>(V_5, V_8, or V_{10} = 0V)</td>
<td>850</td>
<td>–</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>Clamp Cap Discharge Current</td>
<td>(I_{clamp(-)})</td>
<td>(V_5, V_8, or V_{10} = 5V)</td>
<td>–850</td>
<td>–</td>
<td>(\mu A)</td>
<td></td>
</tr>
<tr>
<td>Video Output Low Voltage</td>
<td>(V_{OL})</td>
<td>(V_5, V_8, or V_{10} = 0V)</td>
<td>1.2</td>
<td>–</td>
<td>(V)</td>
<td></td>
</tr>
<tr>
<td>Video Output High Voltage</td>
<td>(V_{OH})</td>
<td>(V_5, V_8, or V_{10} = 5V)</td>
<td>8.9</td>
<td>–</td>
<td>(V)</td>
<td></td>
</tr>
<tr>
<td>Video Output Offset Voltage</td>
<td>(\Delta V_O(2V))</td>
<td>Between Any Two Amplifiers, (V_{15} = 2V)</td>
<td>±0.5</td>
<td>±50</td>
<td>(mV) Max</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Delta V_O(4V))</td>
<td>Between Any Two Amplifiers, (V_{15} = 4V)</td>
<td>±0.5</td>
<td>±50</td>
<td>(mV) Max</td>
<td></td>
</tr>
<tr>
<td>AC Dynamic Test ((S17, S21, S26) Closed, (V_{14} = 0V, V_{15} = 4V, f = 10kHz) unless otherwise specified)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Video Amplifier Gain</td>
<td>(A_{V\text{max}})</td>
<td>(V_{12} = 12V, V_{IN} = 560mVP_{\text{p-p}})</td>
<td>6.6</td>
<td>–</td>
<td>(V/V)</td>
<td></td>
</tr>
<tr>
<td>Video Amplifier Gain for (A_V) Low</td>
<td>(V_{12\text{low}})</td>
<td>(V_{IN} = 1V_{P_{\text{p-p}}}, \text{Note 4})</td>
<td>2.0</td>
<td>–</td>
<td>(V/V)</td>
<td></td>
</tr>
<tr>
<td>Video Gain Match at (A_{V\text{max}})</td>
<td>(\Delta A_{V\text{max}})</td>
<td>(V_{12} = 12V, \text{Note 5})</td>
<td>±0.2</td>
<td>–</td>
<td>(dB)</td>
<td></td>
</tr>
<tr>
<td>Video Gain Match at (A_{V\text{mid}})</td>
<td>(\Delta A_{V\text{mid}})</td>
<td>(V_{12} = 5V, \text{Note 5})</td>
<td>±0.2</td>
<td>–</td>
<td>(dB)</td>
<td></td>
</tr>
<tr>
<td>Video Gain Match at (A_{V\text{low}})</td>
<td>(\Delta A_{V\text{low}})</td>
<td>(V_{12} = V_{12\text{low}}, \text{Note 4, Note 5})</td>
<td>±0.3</td>
<td>–</td>
<td>(dB)</td>
<td></td>
</tr>
<tr>
<td>Video Amplifier Distortion</td>
<td>(THD)</td>
<td>(V_{12} = 3V, V_{IN} = 1V_{P_{\text{p-p}}})</td>
<td>0.5</td>
<td>–</td>
<td>(%)</td>
<td></td>
</tr>
<tr>
<td>Video Amplifier Bandwidth</td>
<td>(f (-3dB))</td>
<td>(V_{12} = 12V, \text{Note 6, Note 8})</td>
<td>70</td>
<td>–</td>
<td>(MHz)</td>
<td></td>
</tr>
<tr>
<td>Video Amplifier, 10kHz Isolation</td>
<td>(V_{sep10kHz})</td>
<td>(V_{12} = 12V, \text{Note 7})</td>
<td>–60</td>
<td>–</td>
<td>(dB)</td>
<td></td>
</tr>
<tr>
<td>Video Amplifier, 10MHz Isolation</td>
<td>(V_{sep10MHz})</td>
<td>(V_{12} = 12V, \text{Note 7, Note 8})</td>
<td>–40</td>
<td>–</td>
<td>(dB)</td>
<td></td>
</tr>
</tbody>
</table>

Note 3. These parameters are guaranteed and 100% tested.

Note 4. Determine \(V_{12\text{low}}\) low for \(-40dB\) attenuation of output. Reference \(A_V\) to max.

Note 5. Measure gain difference between any two amplifiers. \(V_{IN} = 1V_{P_{\text{p-p}}}\).

Note 6. Adjust input frequency, \(f_{IN}\), from 10kHz (\(A_V\ max\) ref level) to the \(-3dB\) corner frequency \((f -3dB)\). \(V_{IN} = 560mV_{P_{\text{p-p}}}\).

Note 7. \(V_{IN} = 560mV_{P_{\text{p-p}}}\) at \(f_{IN} = 10kHz\) to any one amplifier. Measure output levels of the other two undriven amplifiers relative to driven amplifier to determine channel separation. Terminate the undriven amplifier inputs to simulate generator loading. Repeat test at \(f_{IN} = 10MHz\) for \(V_{sep} = 10MHz\).

Note 8. Special test fixture without socket required.
Pin Connection Diagram

- **V_CC 1**: 1
- **Contrast Cap**: 2
- **GND**: 7
- **G Clamp Cap**: 8
- **B Video Input**: 9
- **B Clamp Cap**: 10
- **V_INREF**: 11
- **Contrast**: 12
- **V_CC 1**: 13
- **Clamp Gate**: 14
- **R Video Input**: 4
- **R Clamp Cap**: 5
- **G Video Input**: 6
- **R Clamp**: 26
- **R Drive**: 27
- **R Video Output**: 25
- **R Clamp (+)**: 24
- **R Clamp (-)**: 26
- **B Clamp Cap**: 10
- **B Clamp**: 17
- **B Clamp (+)**: 15
- **B Clamp (-)**: 17
- **G Clamp Cap**: 8
- **G Clamp**: 21
- **G Clamp (+)**: 19
- **G Clamp (-)**: 21
- **G Drive**: 22
- **G Video Output**: 23
- **G Clamp (+)**: 23
- **G Clamp (-)**: 21
- **B Drive**: 18
- **B Video Output**: 20
- **B Clamp (+)**: 14
- **B Clamp (-)**: 17
- **B Clamp Cap**: 10
- **B Clamp Cap**: 10

Dimensions:
- **1.469 (37.32) Max**
- **.540 (13.7)**
- **.100 (2.54)**
- **1.300 (33.02)**
- **.122 (3.1)** Min
- **.250 (6.35)**