NTE3028
Infrared Emitting Diode
PN Gallium Arsenide

Description:
The NTE3028 is designed for applications requiring high power output, low drive power, and very fast response time. This device is used in industrial processing and control, light modulators, shaft or position encoders, punched card readers, optical switching, and logic circuits. It is spectrally matched for use with silicon detectors.

Features:
- High Power Output
- Infrared Emission
- Low Drive Current
- Popular TO18 Type Package for Easy Handling and Mounting

Absolute Maximum Ratings:
Reverse Voltage, V_R ... 6V
Forward Current, I_F
 Continuous ... 60mA
 Peak (PW = 100µs, Duty Cycle = 2%) 1A
Total Device Dissipation ($T_A = +25°C$), P_D ... 250mW
Derate Above 25°C (Note 1) ... 2.27mW/°C
Operating Temperature Range, T_A ... −55° to +125°C
Storage Temperature Range, T_{stg} ... −65° to +150°C

Note 1. Printed circuit board mounting.

Electrical Characteristics: ($T_A = +25°C$ unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Leakage Current</td>
<td>I_R</td>
<td>$V_R = 3V$</td>
<td>–</td>
<td>2</td>
<td>–</td>
<td>nA</td>
</tr>
<tr>
<td>Reverse Breakdown Voltage</td>
<td>$V_{(BR)R}$</td>
<td>$I_R = 100µA$</td>
<td>6</td>
<td>20</td>
<td>–</td>
<td>V</td>
</tr>
<tr>
<td>Forward Voltage</td>
<td>V_F</td>
<td>$I_F = 50mA$</td>
<td>–</td>
<td>1.32</td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td>Total Capacitance</td>
<td>C_T</td>
<td>$V_R = 0V, f = 1MHz$</td>
<td>–</td>
<td>18</td>
<td>–</td>
<td>pF</td>
</tr>
</tbody>
</table>
Optical Characteristics: \(T_A = +25^\circ C \) unless otherwise specified

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Test Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Output Power</td>
<td>(P_O)</td>
<td>(I_F = 60\text{mA}, \text{Note 2})</td>
<td>–</td>
<td>2.5</td>
<td>–</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_F = 100\text{mA}, \text{Note 2, Note 3})</td>
<td>1.0</td>
<td>4.0</td>
<td>–</td>
<td>mW</td>
</tr>
<tr>
<td>Radiant Intensity</td>
<td>(I_0)</td>
<td>(I_F = 100\text{mA}, \text{Note 3, Note 4})</td>
<td>–</td>
<td>1.5</td>
<td>–</td>
<td>mW/steradian</td>
</tr>
<tr>
<td>Peak Emission Wavelength</td>
<td>(\lambda_P)</td>
<td>–</td>
<td>940</td>
<td>–</td>
<td>nm</td>
<td></td>
</tr>
<tr>
<td>Spectral Line Half Width</td>
<td>(\Delta \lambda)</td>
<td>–</td>
<td>40</td>
<td>–</td>
<td>nm</td>
<td></td>
</tr>
</tbody>
</table>

Note 2. Power Output, \(P_O \), is the total power radiated by the device into a solid angle of \(2\pi \) steradians. It is measured by directing all radiation leaving the device, within this solid angle, onto a calibrated silicon solar cell.

Note 3. \(PW = 100\mu\text{s}, \text{Duty Cycle} = 2\% \).

Note 4. Irradiance from a Light Emitting Diode (LED) can be calculated by:

\[
H = \frac{I_e}{d^2}
\]

where

- \(H \) is irradiance in mW/cm\(^2\)
- \(I_e \) is radiant intensity in mW/steradian
- \(d^2 \) is distance from LED to the detector in cm

Diagram:

- Cathode
- Anode
- Seating Plane
- .186 (4.72) Dia
- .145 (3.68) Dia
- .030 (.762)
- .195 (4.95)
- .500 (12.7) Min
- .018 (0.45) Dia Typ
- .040 (1.02)
- .220 (5.59) Dia
- .100 (2.54)